Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Endocrinol Metab ; 35(1): 7-10, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37798242

RESUMO

The central nervous system (CNS) relies on myelin for proper functioning. Myelin remodeling is a risk factor for neurometabolic and endocrine malfunction, resulting in cognitive decline and heightened susceptibility to neurological diseases. The plasticity of myelin upon nutrient shifts may lead to dietary and hormonal interventions for preventing and treating neural complications.


Assuntos
Sistema Nervoso Central , Bainha de Mielina , Humanos , Bainha de Mielina/fisiologia , Obesidade/complicações , Fatores de Risco , Dieta
2.
Artigo em Inglês | MEDLINE | ID: mdl-37949733

RESUMO

The escalating prevalence of maternal obesity raises concerns about its influence on offspring health. Exposure to obesogenic environments during early development leads to persistent alterations in brain function contributing to neurological disorders. Nutritional programming emerges as a promising avenue to counteract the deleterious effects of maternal obesity on offspring neurodevelopment.

4.
Nat Cell Biol ; 25(5): 672-684, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37127715

RESUMO

Dietary mono-unsaturated fatty acids (MUFAs) are linked to longevity in several species. But the mechanisms by which MUFAs extend lifespan remain unclear. Here we show that an organelle network involving lipid droplets and peroxisomes is critical for MUFA-induced longevity in Caenorhabditis elegans. MUFAs upregulate the number of lipid droplets in fat storage tissues. Increased lipid droplet number is necessary for MUFA-induced longevity and predicts remaining lifespan. Lipidomics datasets reveal that MUFAs also modify the ratio of membrane lipids and ether lipids-a signature associated with decreased lipid oxidation. In agreement with this, MUFAs decrease lipid oxidation in middle-aged individuals. Intriguingly, MUFAs upregulate not only lipid droplet number but also peroxisome number. A targeted screen identifies genes involved in the co-regulation of lipid droplets and peroxisomes, and reveals that induction of both organelles is optimal for longevity. Our study uncovers an organelle network involved in lipid homeostasis and lifespan regulation, opening new avenues for interventions to delay aging.


Assuntos
Longevidade , Peroxissomos , Humanos , Pessoa de Meia-Idade , Animais , Longevidade/genética , Gotículas Lipídicas , Ácidos Graxos Insaturados , Caenorhabditis elegans/genética , Ácidos Graxos
5.
HardwareX ; 14: e00417, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37102068

RESUMO

Studying the development of neural circuits in rodent models requires surgical access to the neonatal brain. Since commercially available stereotaxic and anesthetic equipment is designed for use in adults, reliable targeting of brain structures in such young animals can be challenging. Hypothermic cooling (cryoanesthesia) has been used as a preferred anesthesia approach in neonates. This commonly involves submerging neonates in ice, an approach that is poorly controllable. We have developed an affordable, simple to construct device - CryoPup - that allows for fast and robust cryoanesthesia of rodent pups. CryoPup consists of a microcontroller controlling a Peltier element and a heat exchanger. It is capable of both cooling and heating, thereby also functioning as a heating pad during recovery. Importantly, it has been designed for size compatibility with common stereotaxic frames. We validate CryoPup in neonatal mice, demonstrating that it allows for rapid, reliable and safe cryoanesthesia and subsequent recovery. This open-source device will facilitate future studies into the development of neural circuits in the postnatal brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...